If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 27x2 + -11x + 16 = 0 Reorder the terms: 16 + -11x + 27x2 = 0 Solving 16 + -11x + 27x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 27 the coefficient of the squared term: Divide each side by '27'. 0.5925925926 + -0.4074074074x + x2 = 0 Move the constant term to the right: Add '-0.5925925926' to each side of the equation. 0.5925925926 + -0.4074074074x + -0.5925925926 + x2 = 0 + -0.5925925926 Reorder the terms: 0.5925925926 + -0.5925925926 + -0.4074074074x + x2 = 0 + -0.5925925926 Combine like terms: 0.5925925926 + -0.5925925926 = 0.0000000000 0.0000000000 + -0.4074074074x + x2 = 0 + -0.5925925926 -0.4074074074x + x2 = 0 + -0.5925925926 Combine like terms: 0 + -0.5925925926 = -0.5925925926 -0.4074074074x + x2 = -0.5925925926 The x term is -0.4074074074x. Take half its coefficient (-0.2037037037). Square it (0.04149519890) and add it to both sides. Add '0.04149519890' to each side of the equation. -0.4074074074x + 0.04149519890 + x2 = -0.5925925926 + 0.04149519890 Reorder the terms: 0.04149519890 + -0.4074074074x + x2 = -0.5925925926 + 0.04149519890 Combine like terms: -0.5925925926 + 0.04149519890 = -0.5510973937 0.04149519890 + -0.4074074074x + x2 = -0.5510973937 Factor a perfect square on the left side: (x + -0.2037037037)(x + -0.2037037037) = -0.5510973937 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 25-[4+8y-3(y+4)]=-4(4y-6)-[6(y-1)-9y+13] | | A=nbx | | p^2-2p-16=-16 | | 25x+125+13x-11=0 | | 2x-10=-22 | | [x-3]=9 | | p=4q+8r | | 6(5x+3)=228 | | -12(5)+24=4x | | 7t-8+4=5t-2 | | 4z-7z=-9z-9-9z | | 4(a-2)=8a-(4a+8) | | -4=3x-4(3x+2) | | 9x-8+4x=7x+6 | | -12(5)+24=4 | | x^2-3x-4=84 | | A=bx-1 | | [3x]=18 | | 9-x=24 | | x^2-19x-102=0 | | 2x-(x+4)=10 | | -12(5)+23= | | h^2+5h+15=15 | | 12(x+4)+x=8(x+6)-5 | | 9x+8=6x+44 | | 5x^2-19x-102=0 | | 3|x-3|=18 | | -15=4d-3-2d | | 2x=5+7 | | 6x+5=8x-3 | | 5-1=3 | | 1.4-2.9= |